On some generalizations of abelian power avoidability

نویسنده

  • Michaël Rao
چکیده

We prove that 2-abelian-cubes are avoidable over a binary alphabet and that 3-abelian-squares are avoidable over a ternary alphabet, answering positively to two questions of Karhumäki et al.. We also show the existence of infinite additive-cube-free words on several ternary alphabets. To achieve this, we give sufficient conditions for a morphism to be k-abelian-n-power-free (resp. additive-n-power-free), and then we give several morphisms which respect these conditions. Additionally, all our constructions show that the number of such words grows exponentially. As a corollary, we get a new lower bound of 3 = 1.059526 . . . for the growth rate of abelian-cube-free words.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avoiding Abelian Powers in Binary Words with Bounded Abelian Complexity

The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden’s theorem, they proved that if a word avoids Abelian k-powers for some integer k, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian k-powers occur in a word ...

متن کامل

Avoidability of long k-abelian repetitions

We study the avoidability of long k-abelian-squares and k-abeliancubes on binary and ternary alphabets. For k = 1, these are Mäkelä’s questions. We show that one cannot avoid abelian-cubes of abelian period at least 2 in infinite binary words, and therefore answering negatively one question from Mäkelä. Then we show that one can avoid 3-abelian-squares of period at least 3 in infinite binary wo...

متن کامل

Every Binary Pattern of Length Greater Than 14 Is Abelian-2-Avoidable

We show that every binary pattern of length greater than 14 is abelian-2-avoidable. The best known upper bound on the length of abelian-2-unavoidable binary pattern was 118, and the best known lower bound is 7. We designed an algorithm to decide, under some reasonable assumptions, if a morphic word avoids a pattern in the abelian sense. This algorithm is then used to show that some binary patte...

متن کامل

On the Unavoidability of k-Abelian Squares in Pure Morphic Words

We consider a recently defined notion of k-abelian equivalence of words by concentrating on avoidability problems. The equivalence class of a word depends on the number of occurrences of different factors of length k for a fixed natural number k and the prefix of the word. We show that over a ternary alphabet, k-abelian squares cannot be avoided in pure morphic words for any natural number k. N...

متن کامل

Abelian Pattern Avoidance in Partial Words

Pattern avoidance is an important topic in combinatorics on words which dates back to the beginning of the twentieth century when Thue constructed an infinite word over a ternary alphabet that avoids squares, i.e., a word with no two adjacent identical factors. This result finds applications in various algebraic contexts where more general patterns than squares are considered. On the other hand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 601  شماره 

صفحات  -

تاریخ انتشار 2015